Enhanced Security Management for Flexible and
Dynamic Cooperative Environments

Jonas Schulte*$, Ingo Dopke*, Reinhard Keil*!, Konrad Stark®, and Johann Ederl!
*University of Paderborn, Heinz-Nixdorf-Institute, 33102 Paderborn, Germany
Email: $schulte@uni-paderborn.de fReinhard.Keil @uni-paderborn.de
TUniversity of Vienna, Department of Knowledge and Business Engineering, 1010 Vienna, Austria
Email: konrad.stark @univie.ac.at
||University of Klagenfurt, Department of Informatics Systems, 9020 Klagenfurt, Austria
Email: eder@isys.uni-klu.ac.at

Abstract— This paper deals with the challenge to create
an authorization and authentication infrastructure for virtual
knowledge spaces. Virtual knowledge spaces are a concept to
build up flexible and adjustable environments for cooperative
work and learning processes. When developing authorization
concepts for virtual knowledge spaces, different boundary con-
ditions have to be considered. Basically, we identify the specific
requirements for the creation of coherent and intuitive rules to
reduce the administrative complexity to a minimum and prevent
mistakes. Furthermore we turn attention to flexibility of the
authorization infrastructure as well as performance issues. The
rights management described in this paper ought to fulfill these
requirements.

I. INTRODUCTION

We are living in a changing information society. The way of
handling electronic information changed fundamentally during
the past years. The original internet as a platform of total
freedom without supervision mutated to a place which is
characterized by monitoring and observation [1], [2]. These
movements are critical with respect to the privacy protection
of internet users. Various social communities lack sufficient
settings to specify detailed access rights. Especially for appli-
cations in the area of Computer Supported Cooperative Work
(CSCW) it is essential to ensure data security. This aspect
becomes even more important if the CSCW application is
used for safety critical business areas, e.g. medical research
with sensitive patient data [3].

In this paper we present an authorization infrastructure
with a novel rights management system applied to cooperative
work environments. Furthermore our development satisfies the
requirements of virtual knowledge spaces (see section II). The
presented authorization infrastructure is not limited to virtual
knowledge spaces and can be adopted to different fields of
application.

The paper is structured as follows. In section II we in-
troduce virtual knowledge spaces by introducing the com-
mon structure, motivate the concept of multiple views, and
present scenarios to exemplify the power and the flexibility.
Section III describes the basic data structure of the developed
authorization infrastructure and draws a distinction between
the different types of rights. Afterwards we explain in sec-
tion IV the hierarchy of rights and the concept of inheritance.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8377
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8377

Section V explains all functions of the rights management
in detail. To improve the performance of the authorization
infrastructure we developed some methods that enable fast
security checking. Furthermore we give different scenarios
in section VII to demonstrate the functionality of the rights
management functions as well as the authorization functions.

II. KNOWLEDGE SPACES — A CONCEPT FOR DYNAMIC
AND FLEXIBLE COOPERATIVE WORK

Virtual knowledge spaces are a key concept to establish
dynamic and flexible cooperative work and learning envi-
ronments. It allows unrestricted structuring of data and pro-
vides means for generating multiple views on the same data
collection (see section II-B). Thus, it is possible to adjust
the environment exactly to the users’ needs, without having
redundancy of the underlying data. The concept of virtual
knowledge spaces has been proven for more than several years
and in various fields of application [4], [5]. The following
section II-A describes the class hierarchy for setting up virtual
knowledge spaces. After that we show how to create different
views of a data collection (section II-B).

A. Common Structure of Knowledge Spaces

Knowledge spaces are our concept for the representation
and the structuring of information within a cooperative work
process. This the concept has been applied to various fields
of application and is well-proven due to almost ten years
experience of software development in the scope of CSCW.
(6]

The basic object structure of virtual knowledge spaces is
quite easy. We distinguish between the following objects:
Room', Container, Document, Attribute, Link,
Group and User. A Room is the representation of a real
room, whereas Container can be compared with a folder.
The intention behind the Room-object is having an object,
that stands for a place where uses can meet each other
and cooperate with each other. Furthermore spaces are
intended to assure awareness. Awareness is indispensable for
successful CSCW applications [7], [8]. On the other hand

!In the object model a Room stands for a virtual knowledge space.

the Container-object is a lightweight construct to organize
information and correlate data. Objects of the type Document
are used as a wrapper around the real content (e.g. a picture,
a word document, ...). There is a fundamental difference
between on the one hand storing content that is linked with
additional information and on the other hand an object that
consists of the content as well as the additional information.
The first option relates different data to each other, whereas
the second and preferred option builds up a combined data
object. For further processing a combined data object has
different advantages. For instance, when creating versions of
an object it is a lot easier to generate a coherent version object
of a combined data object instead of creating equivalent
versions of all related objects that match the combined
data object. Our model allows free attributes at any type
of object. Thereby the model is highly customizable to the
requirements of the current application area. Group-, User-
and Link-objects are self-explanatory. It is mentionable, that
we use Group-objects not only for grouping users, but also
for illustrating roles.

We developed a framework named WasabiBeans that imple-
ments the concept of virtual knowledge spaces. WasabiBeans
is designed as service oriented architecture and implemented
in JavaEE with EJB 3.0 running on JBoss AS [9]. For
further information about the WasabiBeans framework and its
architecture please refer to [10].

B. Multiple Views on a Data Collection

Different applications have different types of data represen-
tation. Therefore usually each application comes with its own
repository containing the related data. Our understanding of
handling information in cooperative work environments is to
work on his or her own data collection and make these data
available in different fields of application. Several reasons ar-
gue for the usage of one data collection instead of creating data
redundancies. In order to avoid problems as updating different
data collections or the distribution of changes among various
repositories, the usage of a common data space is essential.
When setting up an uniform data collection, it is important
to provide different interfaces. WasabiBeans intends to be
a flexible and adjustable framework and therefore provides
various interfaces to access the data.

Unique and creative concepts, e.g. the pyramid discussion
for decision-making processes desire totally different views
and representation types [11]. But even the presentation of
miscellaneous file formats benefit from different views. Image
files might be displayed as a picture gallery, whereas docu-
ments are listed alphabetically. There are boundless possibil-
ities to display a data collection or a set of a data collection.
It is obvious, that different views are meaningful. Making one
data collection available in different applications requires a
sophisticated rights management. In section III we define the
basic elements of the rights management.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8377
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8377

C. Example of Usage

The advantages of virtual knowledge spaces have special
effect when using them in cooperative environments, that are
characterized by dynamic interaction among the participants
and changing circumstances. An example of intensive collab-
oration are joint research projects among universities, research
facilities, and companies. This type of collaboration requires
more than simple document management. Particularly large
joint research projects compose of different sub-projects and
sub-tasks. Since not all participants work on the same task,
the creation of sub-groups is necessary. For each sub-group
one knowledge space can be created as a meeting point and
work place for the collaboration. Hence virtual knowledge
spaces support awareness among users that are present in the
same space, the collaboration is oriented towards the important
participants. Nevertheless the cooperation is not limited to
members of sub-groups, because sub-group members can also
join a higher parent group and enter this group space for inter-
group collaboration.

III. BASIC ELEMENTS

In this section the basic data structure of the authorization
infrastructure is described. The most important data element is
the right item. This item stands for the different types of right
assignments that can be made by an user. A right item features
several properties and is used by the authorization functions,
introduced in section V, as described below.

A. Permissions

Unlike rights, which exhibit a complete rule of the form
Who - What - Whom, a permission is an atomar unit. It does
not give any evidence about the affiliation, but only classifies
the kind of a specific right. Accordingly a permission should
be understood as a property of a right (see section III-B).
To implement a flexible right management the WasabiBeans
framework comes with its own set of permissions. In total
we identified seven permissions (VIEW, READ, EXECUTE,
INSERT, WRITE, COMMENT, GRANT), that might be ex-
tended for specific needs. The meaning of each permission
specified in the WasabiPermission class may vary depend-
ing on the objects the permission belongs to.

1) VIEW:

e WasabiUser: Ability to see a user.

e WasabiGroup: Ability to see a group.

e WasabiDocument: Ability to see a document.

o WasabiLocation’: Ability to see a space or a container.

e WasabiAttribute: Ability to see an attribute.

An example for the visibility of users can be given by the
following scenario: All users of a space are visible, except the
admins. This is meaningful, since usually the users shouldn’t
get in direct contact with the server admins. Therefore the
admins are not listed in the list of visible persons. By using

2WasabiLocation is an abstract object combining the WasabiContainer and
WasabiRoom.

the VIEW right the cognition of any object can be customized.
Another use case for the VIEW right is the scenario that a user
wants to make itself invisible, in order not to be contacted by
others at the moment.

2) READ:

e WasabiUser: Access to all parameters of a user.

e WasabiGroup: Access to all parameters of a group.

e WasabiDocument: Privilege to read a document.

e WasabiLocation: Privilege to enter a space or a con-
tainer.

e WasabiAttribute: Privilege to read the value of an
attribute.

3) EXECUTE:

e WasabiUser: Not defined.

e WasabiGroup: Not defined.

e WasabiDocument: Privilege to execute a file (e.g. a
script).

e WasabiLocation: Not defined.

e WasabiAttribute: Not defined.

4) INSERT:

e WasabiUser: Privilege to insert this user to a group or
to deprive him from it.

e WasabiGroup: Privilege to give or deprive other users
the group membership.

¢ WasabiDocument: Not defined.

e WasabiLocation: Privilege to insert objects into the
space or the container.

¢ WasabiAttribute: Not defined.

To insert a user to a specific group, the executer must have
an INSERT on the group and as well on the user. However,
if a user should be removed from a group, a GRANT on the
group is enough. The reason for this consists of the fact that it
must always be allowed to remove a user from a group which
is a property of the executer.

5) WRITE:

e WasabiUser: Privilege to change and delete all param-
eters of an user. It covers the INSERT right too.

e WasabiGroup: Privilege to change and delete all pa-
rameters of aa group, except the modification of group—
subgroup relation. It covers the INSERT right too.

e WasabiDocument: Privilege to rename, delete, and
change a document.

e WasabiLocation: Privilege to rename, delete, and insert
objects into a space or a container. It covers the INSERT
right too.

e WasabiAttribute: Privilege to change the value or
delete the attribute.

The WRITE permission covers the same as the INSERT
permission and extends it with additional features.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8377
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8377

6) COMMENT:

e WasabiUser: Privilege to annotate this user with tags.

e WasabiGroup: Privilege to annotate this group with tags.

e WasabiDocument: Privilege to annotate this document
with tags.

e WasabiLocation: Privilege to annotate this space or
document with tags.

e WasabiAttribute: Privilege to annotate this attribute
with tags.

In fact tags could also be realized by using attributes, however
we think tags are a very important and widely used method
to add catchwords. Due to the frequent usage of tags we
implemented tags as strings, that are easy to use and with
increased performance compared to the free attributes.

7) GRANT:

e WasabiUser: Privilege to grant permissions on this user.

e WasabiGroup: Privilege to grant permissions on this
group. In addition it is needed to change the group—
subgroup relation. Therefore the executor must have
GRANT permission on both groups (subgroup and su-
perordinated group). The GRANT permission is also
required to delete a group. In addition, it allows to
exclude users from a group.

e WasabiDocument: Privilege to grant permissions on this
document.

e WasabiLocation: Privilege to grant permissions on this
space or container.

e WasabiAttribute: Privilege to grant permissions on
this attribute.

GRANT allows the declaration of new access rights as well
as to change and delete them. A user who has GRANT
permission on a specific object can be called the object’s
owner. As a result, the same object may be owned by (also
called “administrated by”) more than one person.

B. Rights and their properties

As shown above, there exist seven different kinds of permis-
sions in WasabiBeans. A permission alone does not have any
impact, instead it is a property of a complete right. Because of
the fact WasabiBeans uses discretionary access control, every
right should have at least the following properties:

« allocation to a specific subject

« kind of permission

« allocation to a specific object?

This basic structure may be extended. As an additional
property, we can consider the following one:

o type of right (allowance or forbiddance)

In our concept a forbiddance is defined to be more powerful
than an allowance. Resulting from this a forbiddance may
overlap an allowance, since more than one relevant right for a
specific relation of Subject—Permission—Object can be defined.

3In WasabiBeans, the rights are stored directly in the objects they are
allocated to.

This may occur when setting group rights. In this manner, the
property

o status of hierarchy
is also important. In case the authorization function discovers
more than one relevant right, the system has to decide about
which right is preferred.

There is the rule that a forbiddance is preferred to an
allowance when belonging to the same hierarchy level. Assum-
ing the levels forbiddance and allowance constitute their own
hierarchy, this implicates the effective number of hierarchy
levels is twice compared to the number of explicit ones. It
should be obvious, that without forbiddance the generation of
different hierarchy levels is needless. Resulting a right may
have three different conditions: It can be either an allowance,
a forbiddance, or not specified.

As an additional property a time interval can be specified
for rights in WasabiBeans. Section III-E deals with this issue
and explains the arising consequences for the authorization
infrastructure. Furthermore, there are different criteria that
has to be interpreted for the validation of a right. They are
described in detail below.

C. User Rights

An access right always refers to a specific WasabiUser
object. It assesses an operation for which the user is authorised
on the specific data object or for which he is forbidden.
Because of the fact that a WasabiBeans environment may
contain plenty of different users, it is not practicable to allocate
each conceivable right as a user right. To ease the right
allocation and to reduce the number of granted rights, there
exist the group rights (see III-D).

D. Group Rights

Within its function, a group right is similar to a user right,
with the difference that it is not granted to a specific user, but
a whole group of users. Because of this fact, it is sufficient
to be a member of the specific group or the corresponding
subgroups to gain all associated allowances and forbiddances.
If a WasabiUser is member of two different groups, with at
least one group which grants an allowance, this allowance
overlaps each forbiddance which results from the membership
on another group (see IV-A).

By the concept of group rights it is possible to define special
fields of responsibility. For example, a group can be created
whose members may access on special parts of the object
tree to perform well defined operations there. If we want to
allocate some users for this field of responsibility, we only
need to assign them to this group. A declaration of additional
user rights is not necessary.

E. Time Rights

As a difference to the common infinite rights, a time based
right is only valid for a certain interval. This means, it is
similar to a common right which is expanded by a starting
point and an ending point. These two points in time are
expressed in the number of milliseconds, which are elapsed

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8377
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8377

since the first january 1970. Refering to this, a time right
gets in use if the actual computer time is inside this interval.
In a regular case, interferences with other time rights are
always avoided by the system. This means, if a new time right
is granted, whose interval overlaps at least one of another
relevant time right, this interval may be shortened. In an
extrem case, it may also be splitted in two other time rights
or totally annulated.

If we abstain from the concept of time rights, a temporary
allowance or forbiddance must always be initiated by the
administrator to the designated point of time and annulated
at another point of time. Thereby, the administrative effort
would be elevated and the flexibility of the system would be
decreased.

1) Dealing with occlusions: As it was already mentioned
in this chapter, by the initiation of new time rights, there may
occur inconsistences to other time rights which already exist.
These inconsistences are dissolved by preferring the new time
right. This means, it may occlude existing rights. To ensure
this, before the initiation the system must check every available
time right which contains the same user or group name and
the same allocated object. Now the interval of the new right
becomes compared with the one of the old right. It is N =
(N1, N) the interval of the new time right and O = (O4, O5)
the interval of the old time right. There is the condition N7 <
N> and O; < O3. Now we can divide between the following
cases (the above cases exclude the below cases, the system
works in sequence during the check):

1) Ny < Oy or Ny > Oy — There are no difficulties

because the two intervals do not interfere.

2) N; < 0O; and Ny > O2 — The old time right becomes
replaced by the new one.

3) N; < 01 and N; < Oy — The old time right is
shortened on (N2 + 1, 05).

4) N; > O; and Ny < O2 — The old time right becomes
splitted in two subrights with the intervals (O, Ny —1)
and (N2 +1,02).

5) N; > O; and Ny > Oy — The old time right becomes
shortened on (O1, N7 — 1).

FE. Unlimited Rights

An unlimited right has got the same function as a time right
with the difference, that there is given no interval. Of course
there is the possibility to abstain from unlimited rights and to
generate each right as a time right. By this case, an unlimited
right would be a time right with the highest possible interval.
But such a decision leads to a problem: If we generate a new
time right, an old, virtual unlimited right which collidates with
it would be cutted in two subrights (see III-E1). From this, the
following disadvantages result:

o The old, once unlimited right should be deleted — Now

we have to delete two subrights.

o The new time right should be deleted — This results in

a gap.
As a consequence, we generate two different layers for the
differenciation of time rights and clearly unlimited rights. The

time based layer should be above the unlimited one, because
it can be considered as more special. The figure 1 should
illustrate this concept. Another advantage of it results from the
fact that we always have the possiblity of a clearly abdication
from time based rights.

Time graded access trials

Unlimited Right

Fig. 1. The two time layers

G. Inherited Rights

The adjustment of data inside a tree structure suggests that
access rights may be passed from a high into a junior instance,
which can be considered as inheritance. If we abstain from
this possibility, it is necessary to grant explicit rights for each
single data object which increases the administrative effort. In
addition to this, on ordinary scenarios we often have got the
case, that all objects inside a junior structure have the same
or at least very similar rights. The possibility of inheritance
should support this.

Basically, we have got the principle that with two or more
relevant rights within the same triple relationship (subject,
permission, object), always the right which is nearer to the
target object has got priority. This means, if there are for
example two containers above a WasabiDocument, in which
is in each case indicated a right for the same user, the right of
the lower container is preferred. If there is even a collision of
an inherited right with an explicit right, the inheritance may
not occur. For time rights, there again is the principle that
the rights with the shorter distance to the specific object may
shorten, occlude or divide the intervals of the rights with the
larger distance.

IV. GENERAL RULES
A. The hierarchy of rights

As ist was already mentioned in the last section, there exist
three different criteria, which decide about the scope of a right:

1. Realm: User or group
2. Period of validity: Infinite or time based
3. Ancestry: Explicit or inherited

Altogether, we have 2Number of criteria 8 different
kinds of rights. If there is a check if a user may perform a
specific action, there can be the problem that several rights are
found, which differ in their kinds. For this case, it is necessary
to build up a hierarchy, which allows a clear decision which
right should be preferred. The graduation, which WasabiBeans
uses is shown by figure 2.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8377
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8377

Period of validity Realm Kind of right Ancestry

High

Low Unlimited Right Allowance Inherited

Group Right

Fig. 2. Hierarchy of rights

As a consequence from this, user rights are always preferred
before group rights. This has got several reasons: On the
one hand we estimate from the fact, that in most cases there
are only group rights and a user right is something special.
On the other hand the administrator has got a back door to
exclude some users from a group forbiddance without the
need of removing them from the group. It can be said that
this differentiation between user rights and group rights forms
the only two explicit hierarchy levels of WasabiBeans. The
other levels (explicit right vs inherited right, time based vs
unlimited) are no more than rules to decide which rights are
relevant.

As it was already mentioned in III-F, a time right may cover
an unlimited right with the same triple relationship (subject,
permission, object). For this reason it can be considered as
a transaction: If the interval of the time right is reached,
the unlimited right becomes deactivated and the time right
gains the function of an unlimited right. After leaving the
interval, the time right loses its function and the unlimited
right recovers activation. This functionality of time rights
can be concluded from figure 1. In a similar manner, the
differentiation between explicit and inherited rights is handled:
If we have got more than one right with the same triple
relationship, we always take the right with the lowest distance
to the target object. The subsection IV-B provides further
information about this.

B. The concept of inheritance

As it was already mentioned in III-G, a right is always
inherited from the superordinated instance. Because of our
architecture model, the type of a WasabiObject decides to
which other WasabiObject types its right may become inher-
ited. There exist the following possibilities:

e WasabiRoom — WasabiRoom, WasabiContainer,
WasabiDocument, WasabiAttribute

o WasabiContainer — WasabiContainer, WasabiDocument,
WasabiAttribute

e WasabiDocument — WasabiAttribute

o WasabiGroup — WasabiGroup*, WasabiAttribute

o WasabiUser — WasabiAttribute

o WasabiAttribute — WasabiAttribute

Up to this, there must be additional rules which decide if an
inherited right becomes covered by an existing, explicit right:

4Has to be a subgroup

« Both rights have got an unlimited period of validity. This
leads to a total covering (no inheritance).

o The right with the lower distance is unlimited, the other
is time based. This also leads to a total covering of the
inherited right, to support the transaction concept of time
based rights (mentioned in III-G).

o Both rights are time based. In this case, the inherited
right can be handled by the rules which are mentioned in
II-E1.

A term which can be associated with the covering of right is
the so called substructure.

Definition 1: A substructure always opens if a should be
inherited right becomes covered totally or partially by an
explicit right, which means there is a collision. It contains
the property that it persists in most cases if there is a change
in the object tree above.

V. RIGHT MANAGEMENT FUNCTIONS
A. Implementing the concept of inherited rights

To implement the concept of inheritance, we have to con-
sider two different approaches:

1) If the authorization function has to decide about the
allowance of a specific operation on a target WasabiOb-
ject, it may run up to the root of the object tree applying
the inheritance rules to get all considerable rights.

2) The right declaration functions may propagate all should
be inherited rights from each WasabiObject down to the
bottom of the object tree. These lists of inherited rights
may be used by the authorization function in a direct
manner.

The architecture of WasabiBeans uses the second approach.
The reason for this decision was because we emanate from
the fact, that the declaration of rights is more rarely used than
the check of them. For this reason, the additional effort of
propagation may be tolerated if it speeds up the authorization.

B. Using Propagation

A basis for the use of propagation is given by two additional
structures:

1) It must be possible to decide whether a right is explicit

or inherited.

2) Each WasabiObject must contain a flag which shows if
it is allowed to inherit the rights from the superordinated
object.

Figure 3° shows an example for a structure with inheritance.
As it should be obvious, the explicit right of the container
’Pictures’ forms a substructure, because it blocks a should be
inherited right from above.

There is also the demand that this extended structure
contains a consistent state. A right structure is always in a
consistent state, if the inherited rights directly result from the
explicit rights by the use of the existing rules of inheritance

SRight marked with an (e) are explicit rights, those marked with an (i) are
inherited rights.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8377
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8377

(e) Bob: READ, Allow
Documents

]
5 (e) Bob: READ, Forbid 3

Steam

M (i) Bob: READ, Forbid (i) Bob: READ, Allow

Fig. 3. An example for inheritance

and occlusion. An example for an inconsistent state is given
by figure 4.

(e) Bob:
(e) Tom:

READ, Allow
READ, Allow

(i) Bob:
(i) Bob:

READ, Allow
WRITE,Allow

Documents

Fig. 4. An example for two inconsistences

According to this, the used propagation functions must al-
ways ensure consistency, otherwise they don’t work correctly.
Now we have got the question which kinds of propagation we
need. The following scenarios have to be considered:

1) A new right is granted — It must be propagated down
the subtree.

2) An old right is changed — The change must be propa-
gated down the subtree.

3) An old right is removed — All inherited rights which
result from this old right must also be removed.

4) A new object is created — It must inherit the rights from
its location.

5) An existing object is moved — The object and its subtree
must lose the inherited rights from the old location and
gain the rights of the new one.

6) The inheritance of an object is deactivated — The
inherited rights from its location must be removed.

7) The inheritance of an object is activated — The rights
from its location must be gained as inherited rights.

Altogether, we have got four different propagation functions
which can handle all these scenarios:

1. Inherit rights: This function can be used for scenario 3
(if the removed right was a substructure to a right from
above, this right from above must be propagated again),
4, 5 (gaining the rights of the new location) and 7.

2. Disinherit rights: This function can be used for scenario
5 (removing the inherited rights of the old location) and
6.

3. Grant rights: This function can be used for scenario 1
and 2 (grant the changed right again to overwrite the old
version).

4. Remove rights: This function can be used for scenario
3.

According to this, we also use an additional propagation
function:

5. Reset rights: Remove all explicit rights in the subtree,
but not in its root.

With the use of Reset, it is possible to clear up a subtree from
all its substructures and to grant that only the rights of its root
have got influence down below.

C. Basic structures for propagation

All of the propagation functions which were mentioned in
V-B have got the similarity that they must run through a
subtree of WasabiObjects. This functionality can be granted by
a single basic algorithm, which always starts at a specific node
and performs a recursive depth first search by using the rules
mentioned in IV-B to find child nodes. We call this algorithm
runThroughSubtree. For its assignment in propagation, it must
get two different kind of information:

1) The propagation function that should be performed.
2) An identification of the right(s) it has to deal with.

The propagation functionalities are implemented within five
different classes, according to the five kinds of propagation.
Each of these classes extends from the abstract superclass
’PropagationStrategy’. This superclass instructs the use of two
different methods, which must be overwritten:

o allowTermination: Decides on which nodes the recursion
can be stopped.

o handleObject: Decides which actions have to be per-
formed on the visited nodes.

Both methods use a so called context, which is implemented
as a list of rights that can be assigned to the runThrough-
Subtree algorithm. During the recursion, this context may be
changed by handleObject to fullfill the rules mentioned in
IV-B. This is done by a compare function, which solves all
overlappings of context rights with local explicit rights. In a
similar manner, the local explicit and/ or inherited rights can
be adjusted to the context list.

D. Inherit rights

This algorithm performs the following steps:

1) Take a look if the inheritance flag on the target
WasabiObject o is already activated. If so, the algorithm
stops.

2) Load all rights of the superordinated WasabiObject o’ in
the context. Now this context and an object of the class
Inherit is assigned to the propagation function.

3) If the propagation function terminates successfully, the
inheritance flag is set.

In the class Inherit both functions which are instructed by
the PropagationStrategy class, are defined:

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8377
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8377

o allowTermination: If the context is empty or the inher-
itance flag is not set (except in the root) the algorithm
terminates.

o handleObject: Adjust the context to the local explicit
rights by the rules mentioned in IV-B. Then propagate
the context as inherited rights.

E. Disinherit rights
This algorithm performs the following steps:

1) Take a look if the inheritance flag on the target
WasabiObject o is already deactivated. If so, the algo-
rithm stops.

2) Load all inherited rights of o in the context. Now this
context and an object of the class Disinherit is assigned
to the propagation function.

3) If the propagation function terminates successfully, the
inheritance flag is deactivated.

In the class Disinherit both functions which are instructed
by the PropagationStrategy class, are defined:

o allowTermination: Similar to V-D.

o handleObject: Adjust the context to the local explicit
rights by the rules mentioned in IV-B. Then remove all
local inherited rights which compare with the context.

E. Remove rights
This algorithm performs the following steps:

1) Load the should be deleted right(s) into the context.

2) Compare the context with the explicit rights of the target
object. Every context right with no equivalent should be
removed.

3) Assign the (perhaps shortened) context to the propaga-
tion function and also an object of the class Remove.

4) Look into the superordinated object of the target and
load all rights, which perform a collision with the
(perhaps shortened) old context into a new context.

5) Assign the new context to the propagation function and
also an object of the class Inherit. The root of this
function is the target object.

In the class Remove both functions which are instructed by

the PropagationStrategy class, are defined:

o allowTermination: Similar to V-D.

o handleObject: Adjust the context to the local explicit
rights by the rules mentioned in IV-B. Then remove
all local explicit (in the root) or inherited rights which
compare with the context.

G. Grant rights
This algorithm performs the following steps:

1) Load the right(s) into the context.
2) Assign the context to the propagation function and also
an object of the class Grant.
In the class Grant both functions which are instructed by
the PropagationStrategy class, are defined:

o allowTermination: Similar to V-D.

o handleObject: Adjust the context to the local explicit
rights by the rules mentioned in IV-B (not in the root).
Adjust the local explicit rights to the context (only in the
root). Adjust the local inherited rights to the context. At
least, propagate the context as explicit rights (in the root)
or inherited rights.

H. Reset rights
This algorithm performs the following steps:

1) Assign an object of the class Reset to the propagation
function.

In the class Reset both functions which are instructed by
the PropagationStrategy class, are defined:

o allowTermination: The algorithm terminates if the initia-
tor has got no GRANT on the local node.

o handleObject: If the inheritance is not activated, set
the flag. Remove all local, explicit rights by using the
Remove-function (see V-F).

VI. AUTHORIZATION FUNCTIONS

The last chapter has dealt with the right management and
its consistency. Now we show how the declared rights can be
used for authorization functions.

Altogether, there are three different algorithms for the check
if a user owns a specific right on an object. At first, the
certificate check is performed. If no relevant certificate with a
required entry can be found, WasabiBeans uses the fast check.
But this fast check may only be performed if there are no time
rights on the target object. Otherwise, it has to use the slow
check.

A. The Certificate Check

A certificate is always generated or updated, if a specific
user right was checked. For this reason, it is not important
if this check has lead to an allowance or a forbiddance. This
means, a certificate should not always grant an allowance but
saving the result of the last check. The collectivity of all cer-
tificates forms a cache which should fasten the authorization
process. Its advantages on speed result from the following
points:

1. Only the rights which are used more often are regarded.

2. The expensive checks for group membership needn’t be

performed.

Point 2 leads to the conclusion that a certificate is only
declared on a specific user and never on a group. This is
because the user is the only subject of the authorization process
and not its groups. For this reason, the certificates are saved
within the WasabiUser objects. We use hashmaps which form
relationships of the kind WasabiObject - WasabiCertificate.
This leads to another advantage:
3. There is no need to run through a big list of right objects:
Instead of O(n), the access on a hashmap often has got
an effort of O(1).
A certificate is always removed if the corresponding rights
are changed. Another reason is the change of the users group

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8377
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8377

memberships. If such a change is performed, all certificates of
the user must be removed because an exact check for relevant
certificates would be too expensive.

An important point of our relationship WasabiUser -
WasabiObject - WasabiCertificate is the fact that the kind of
permission is not involved. For this reason, a WasabiCertificate
is implemented as the sum of all seven possible permissions
of a WasabiUser - WasabiObject relationship. These seven
permissions are combined in one single value. This value has
got an initial 0. If a permission was checked by fast or slow
check, it gets the following extension:

o Allowance: Add 3permissionNumber—1

o Forbiddance: Add 2 3permissionNumber—1

If a certificate check is performed, the algorithm has to look
at the specific right tertiary position. On a value of 1 the algo-
rithm grants an allowance, a value of 2 leads to a forbiddance.
However, a 0 has got the meaning that this permission wasn’t
checked already and so one of the other algorithms must be
used. Before this, the algorithm also considers the timestamp
of the certain certificate. If it is smaller than or equal to
the actual system time, the certificate must be dropped. A
certificate may always get such a timestamp, if the Slow Check
was used (see VI-C).

B. Fast Check

This algorithm is very simple: It runs through the list
of WasabiACLEntrys and stops if it finds the first relevant
allowance or forbiddance. As a condition, the rights must be
sorted by their hierarchy level:

o Level 4: User forbiddance

o Level 3: User allowance

o Level 2: Group forbiddance

o Level 1: Group allowance

Such a sorted form arrangement can be granted by the propa-
gation functions. If no relevant right was found, it is taken
as a general forbiddance. If the Slow Check was partially
performed before, the algorithm must eventually consider the
value maxTime for the generation or update of the certificate
(see VI-C).

C. Slow Check

This complete check is always needed if at least one time
based right exists in the target WasabiObject. The reason for
this consists of the fact, that the hierarchy mentioned in VI-B
can’t be used: If a right of high level is already found, it may
be covered later by a colliding time right of a low level which
lies deeper in the list.

The algorithm uses the following steps:

o Prescan: Find all relevant time rights® and insert them
into a special list. Generate the value maxT'ime, which
is the lowest start time of all time rights which fit for the
subject and needed permission and which startTime is
higher than the actual time.

6 A time right is relevant if it fits for the subject, the needed permission and
the actual system time

o Postscan: If no relevant time right was found, the fast
check may be performed. Otherwise, find all relevant,
unlimited rights and insert them into a second list. But
such an insert is only allowed if the right has got no
overlapping with the list of relevant time rights.

o Final Scan: Run through both lists. Every right is saved
within a special variable, if its hierarchy level is higher
than the hierarchy level of the right saved before. Having
reached the end, the state of the last saved right is taken
(allowance or forbiddance). If both lists are empty, it is
taken as a general forbiddance.

The certificate handling has got the extension that the value
maxTime must also be considered. If a new certificate is
generated, it gets maxT'ime — 1 as a timestamp. Otherwise,
if the algorithm has to update an existing certificate, its
timestamp is set to mazTime—1, if mazTime—1 is smaller
than the existing timestamp.

The figure 5 shows an example for a slow check:

READ-Access
Object
on time 278

Postscan Final Scan

A: READ, Allow,
Interva: 100 - 600
C: READ, Forbid

Prescan

A: READ, Allow,
Interva: 100 - 600

A: READ, Forbid
B: READ, Allow

C: READ, Forbid

A: READ, Allow,
Interva: 100 - 600

C: READ, Forbid,

Interva: 100 - 200

Fig. 5. An example for a slow check

VII. SCENARIOS
A. Scenario 1 - The change of rights

This example of use deals with the change of explicit rights.
For this case, some rights of a user on a special container shall
be added and others shall be removed. Along with this change
comes an affection of the subordinated objects. On a system
which works without inheritance, this could cause the effect
that some substructures of these objects may be overwritten
if they collide with rights which are changed above. This
means that the existing right structure of this user becomes
obsolete. For example, there is a forbiddance on a subcontainer
which now becomes overwritten by an allowance from above.
But such an overwriting may be undesirable if the assertice
forbiddance should continue existing. For this case, it must
be renewed after the operation or it must from the first be
determined where the recursive right allocation should stop.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8377
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8377

Especially on folder structures with a very complex right struc-
ture, where many similar cases are given, the administrative
effort may increase strongly.

Up to this, the inheritance of rights has got the advantage,
that it is possible to change the rights of a user on a space
or a container without destroying the subjacent structure. But
there is also the option, that such an absolute adaptatio may
be done (by the reset function) if it is desired. From this it
follows that the administration becomes more flexible by the
concept of inheriting rights than by a more simple scheme.

Eventually, after such a right granting it can be useful to
know if there also exist rights in the below subtree which affect
the specific user. As mentioned before, these rights would
cover the new right which was granted above. In this case,
the administration environment may intervent and show the
administrator that these substructures and in which locations
they exist. Because of this information it is possible to make an
easier decision, if and which substructures have to be removed.

B. Scenario 2 - Research and presentation

There is a number of users which shall get some documents
for research. These documents were sorted by their theme
into several containers. Now the system administrator wants
to create a new group, which shall get the required access
rights. Possibly this could be created as a subgroup which
superordinated group already owns a great amount of these
access rights. Then it would only be necessary to declare the
missing rights to the new group (at least there must be the
VIEW and READ). At least, all users which come in question
for a research are added to this group.

In addition to this, the members of the research group may
get access on another container structure, where they can
document their conclusions. But instead of declaring these
rights to every single user, the administrator only needs to
enhance the right amount of the group. In addition to a simple
read access (VIEW and READ) an upload (INSERT) is also
granted. It could be considered that a general write access
(WRITE) should also be permitted. For this reason, there is
the advantage that it would also be possible that an user may
advance the uploaded conclusion of another (only the creator,
in this case the uploader of a document gets all access rights
on it as initial). A disadvantage of such a decision is, that it
it also possible to delete hardly created results.

Having released this structure, we have got the fact that a
single user has abused its access rights. For this reason, they
should be denied from him. Because of the fact that a direct
access denial is not possible, the administrator uses s specific
user forbiddance, which is mightier than all allowances the
user got from his group relationship(s). Under circumstance,
this denial could be limited on time, whereby it is like a time
based penalty.

C. Scenario 3 - Publishing

In this scenario a container structure should be moved
from a WasabiRoom A into another WasabiRoom B. As
the right structure from space A is very restrictive, space

B grants more liberties. This means, the data of space A
lies in a relative secure area. By moving a part of it into
space B, it can be published to a greater publicity. Here the
concept of inheritance comes into use: Every right on space
B is automatically assigned to the moved container structure,
without the need of an explicit recognition. In this manner,
existing structures may be reused.

Now we have got the case that the container structure itself
contains explicit rights, which are also moved. This could
be a problem if there are forbiddances which undermine the
structure of space B which depends on openness. At this point,
the administrator must intervent: He has got the option to
break all substructures of the moved container by using the
reset-function. But thereby we still have got the possibility
that he doesn’t know the existence of these substructures. For
this reason, the administrative surface may warn him that they
subsist, so that it is easier for him to make such a decision.

VIII. CONCLUSION

In this paper we presented a flexible authorization in-
frastructure for cooperative work environments. Furthermore
we introduced WasabiBeans, a framework for implementing
applications in the scope of computer supported cooperative
work. We exemplified, that an authorization infrastructure
must fulfill special requirements to be applied to cooperative
systems, that are characterized by dynamic and changing work
processes. Especially the concept of assigning privileges by the
use of inheritance assists both, setting up new environments
for collaborations as well as common work processes like
exchanging documents among different users. Another reason
for such a sophisticated approach is justified by the advantages
that come along with the new propagation functions. These
functions guarantee that the rights of moved or copied objects
are always adjusted to the new location correctly.

We came to the conclusion, that a set of permissions
is necessary, that support cooperative work. For instance
the COMMENT permission can be used to permit or deny
users having discussions on an object. The VIEW permission
involves the possibility to make special objects invisible.
Thereby users may not notice them and the protection of
privacy can be granted. Although the infrastructure is flexible
and suitable for various fields of application, users of the final
application benefit from intuitive handling. In difference to
other systems the access rights in WasabiBeans are specified
directly on the objects they are belonging to. This is beneficial
when planing systems with migration functionalities, since all
rights are specified on the object itself and cannot be lost.

Last but not least the focus of this paper was on perfor-
mance issues of the authorization infrastructure. Hence, we
use the propagation algorithms to speed up security checking
functions. In addition sorted lists and certificates ensure very
efficient inspection of already investigated objects and spare
the more complex checking functions.

REFERENCES
[1] R. Capurro, Ethik im Netz. Franz Steiner, 2003, no. 978-3-515-08173-3.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8377
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8377

(2]

3]

[5]

(6]

(7

(8]

9]

(10]

[11]

10

——, Zwischen Vertrauen und Angst. Uber Stimmungen der Informa-

tionsgesellschaft. ~ Springer Berlin Heidelberg, 2008, no. 978-3-540-
77669-7.
K. Stark, J. Schulte, T. Hampel, E. Schikuta, K. Zatloukal, and J. Eder,

“Gatib-cscw, medical research supported by a service-oriented col-
laborative system,” in CAISE 2008 - 20th International Conference
on Advanced Information Systems Engineering, ser. Lecture Notes in
Computer Science, Z. Bellahsene and M. Léonard, Eds., vol. 5074, no.
978-3-540-69533-2. Montpellier, France: Springer, June 2008, pp. 148—
162.

B. ESmann, T. Hampel, F. Goetz, and A. Elsner, “Embedding collabo-
rative visualizations into virtual knowledge spaces,” in 7th International
Conference on the Design of Cooperative Systems, France, Provence, 5
2006, p. 3340.

T. Hampel, H. Selke, and R. Keil-Slawik, “Semantische rdume - von
der navigation zur kooperativen wissensstrukturierung,” in Mensch und
Computer 2004: Aligegenwdrtige Interaktion. Oldenbourg Verlag, 2004,
pp. 221-230.

T. Hampel and R. Keil-Slawik, “sTeam - designing an integrative
infrastructure for web-based computer-supported cooperative learning,”
in Proceedings of the 10th International Conference on World Wide Web,
2001, pp. 76-85.

T. Licht, L. Schmidt, and H. Luczak, “Goal awareness in distributed
cooperative work settings,” in Human Factors in Organizational Design
and Management VII (Aachen 2003), H. Luczak and K. J. Zink, Eds.
Santa Monica: IEA Press, 2003, pp. 329-334.

W. Prinz and T. Gross, “Ubiquitous awareness of cooperative activities
in a theatre of work,” in Fachtagung Arbeitsplatzcomputer: Pervasive
Ubiquitous Computing, A. Bode and W. Karl, Eds. =~ APC, October
2001, pp. 135-144.

J. Schulte, T. Hampel, T. Bopp, and R. Hinn, “Wasabi framework —
an open service infrastructure for collaborative work,” in SKG ’07: Pro-
ceedings of the Third International Conference on Semantics, Knowledge
and Grid, no. 0-7695-3007-9. Xi’an, China: IEEE Computer Society,
October 2007, pp. 242-247.

——, “Wasabi beans — soa for collaborative learning and working
systems,” in DEST ’08: Proceedings of the Second IEEE International
Conference on Digital Ecosystem and Technologies. Phitsanulok,
Thailand: IEEE Computer Society, February 2008, pp. 177-183.

T. Hampel and P. Heckmann, “Deliberative handling of knowledge diver-
sity the pyramid discussion and position-comentary-response methods as
specific views of collaborative virtual knowledge spaces,” in Proceedings
of Society for Information Technology and Teacher Education, 16th
International Conference Annual, SITE 2005, Arizona, USA, 2005.

